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CMIPS5 climate models predict changes in TOA
radiation during 215t century:
high uncertainty in projections

Annual mean top of atmosphere radiation change (RCP4.5: 2081-2100)
- net flux TOA —— W flux TOA SW flux TOA

Figure 12.16 (IPCC AR5)
Anomalies are positive downward (relative to 1900-1950 base period).

Hatching = high uncertainty; stippling = low uncertainty and where
90% of models agree on the sign of change.
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Large spread among model simulations, biases evident

when compared with observations
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Individual models are subject to biases created by structural model
uncertainties, and some models reproduce certain climate processes better
than others.

Ensemble averaging of multiple models is used to add value to individual
model projections by constructing a consensus projection.
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Ensemble-mean projections assume that
models sample full range of possibilities

CMIP5 Model
BCC-CSMI.1
BCC-CSMI1.1.m
BNU-ESM
CanCM4
CanESM2
CCSM4
CESMI1-BGC
CESM1-CAMS5
CESM1-WACCM
CMCC-CESM
CMCC-CM
CMCC-CMS
CNRM-CMS5
ACCESS1.0
ACCESS1.3
CSIRO-MK3.6.0
EC-EARTH
FGOALS-g2
FGOALS-s2
FIO-ESM
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC
HadCM3
HadGEM2-AO
HadGEM2-CC
HadGEM2-ES
INM-CM4
IPSL-CMS5A-LR
IPSL-CMS5A-MR
IPSL-CM5B-LR
MIROC4h
MIROCS5
MIROC-ESM
MIROC-ESM-CHEM
MPI-ESM-LR
MPI-ESM-MR
MPI-ESM-P
MRI-CGCM3
NorESMI1-M
NorESM1-ME

—_
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CMIP5: contains simulation data from ~45
models

Standard sets of experiments (run using
same climate scenario forcings)

Typically ensemble-averaged to produce
climate projections

Independent samples?
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CMIPS Model
BCC-CSM1.1
BCC-CSM1.1.m
BNU-ESM
CanCM4
CanESM2
CCSM4
CESM1-BGC
CESM1-CAMS5
CESM1-WACCM
CMCC-CESM
CMCC-CM
CMCC-CMS
CNRM-CM5

20 modeling groups from around
the world:
each family shares
basic model components

EC-EARTH
FGOALS-g2
FGOALS-s2

GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC

INM-CM4
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
MIROC4h

MIROCS5
MIROC-ESM
MIROC-ESM-CHEM

NorESM1-M
NorESM1-ME
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Models are not independent: do not sample full
range of possible outcomes

CMIPS Model
BCC-CSM1.1

BCC-CSM1.1.m
BNU-ESM
CanCM4
CanESM2
CCSM4
CESM1-BGC
CESM1-CAMS5
CESM1-WACCM
CMCC-CESM
CMCC-CM
CMCC-CMS
CNRM-CM5

EC-EARTH
FGOALS-g2
FGOALS-s2

Some families also share
components or code,

evident in performance
(Knutti 2011)
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Models are not independent: do not sample full

range of possible outcomes

CMIPS Model
BCC-CSM1.1
BCC-CSM1.1.m
BNU-ESM
CanCM4
CanESM2
CCSM4
CESM1-BGC

CESM1-CAM5
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CMCC-CM
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The AGCM family tree
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Some models perform better than others: is an equal-weight
average the best method for combining model output?

Global mean (03/2000-12/2005) R~ CEFES observations
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Project questions:

Can we use knowledge of current climate to produce
better future predictions?

Can we reduce prediction uncertainty by knowing
which models perform better?

Is there a better way to make predictions than an
equal-weight average of models of varying quality?



Possible solution: combine model output
using unequal-weight (“intelligent”)
ensemble averages

Using knowledge of model performance,
create and test metrics for producing
“intelligent” climate predictions
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Previous work has explored model performance
and some unequal-weighting metrics

Several examples:
* Use only subsets of models (USGCRP 2009)

e Create mean-state metrics using model skill (Giorgi and Mearns 2002, 2003;
Reichler and Kim 2008)

* Constrain model projections using mean-state CERES data (Tett et al. 2013)
* Weight using regression between observed and future trends (Boe et al 2009)
* Apply bias correction for present-day to future trends (Baker and Huang 2012)

“The community would benefit from a larger set
of proposed methods and metrics” (Knutti 2010)




Project goal: design a framework for
creating and testing new weighting metrics

How is this project unique?

 Framework will test:

1) A wide variety of metrics

2) Scale-dependence of metrics (global, regional, or
gridpoint-scale weights)

3) State-dependence of metrics (do the weights change
when created using different model experiments?)

4) Creating new ensemble-averaged projections of many
different climate variables

 New, process-based metrics
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A process-based metric is defined as a metric based on the
relationship between physically related climate variables

Example: ratio of outgoing longwave radiation to surface temperature
(longwave component of climate sensitivity)

OLR anomaly _ 80LR
surface temperature anomaly  8Ts

(longwave cloud component) anomaly — SLWcf

surface temperature anomaly oTs

Will also use a variety of process-based metrics (e.g. Nino 3.4 index, MJO)

Framework will be used to test important climate
processes as model weighting metrics

13



Framework can test key science
guestions about climate model quality

* How well do models reproduce observed:
1) mean state
2) variability
3) frequency distribution
for different tested quantities?

 What s the scale dependence of model quality? How does it
vary when weight is computed globally vs. regionally (weight
per grid point, per region, apply regional weights to globe, or
one global weight)?
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1)
2)

3)

4)

Example metric: weight models

by how well

they reproduce OLR frequency distribution

Select resolution (per grid point, regional, global)

Calculate OLR anomaly time series for the model (control run: Pre-

Industrial Control) and observations (detrended)

CMIP5 Model (Pre-Industrial
Control run, 100-year time series)

Observations

@@ﬁl—_.
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(CERES 13-year time series)

#%

Use statistical test to compare time series (Kolmogorov-Smirnov test for

distribution similarity)

Calculate p-value of test to determine “amount of
overlap” between distributions (large p-value:
high similarity): 0<p<1

15
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Example metric: weight models by how well
they reproduce OLR frequency distribution

5) Repeat for each grid point: obtain map of weights for each model

NEFSE RTINS

415 3

6) Apply weights to chosen experiment (AMIP, ‘historical’, RCP future
scenarios) for any variable (in this example: OLR, "historical’)
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7) Calculate weighted ensemble mean

OLR (03/2000-12/2003) - weighted ensemble mean
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Project status

* Created 10 weighting metrics

* Tested on several quantities (LW flux, SW flux,
precipitation, temperature anomaly)

* Tested on 2 different CMIP5 ensemble scenarios
(present-day experiments): ‘historical’ (fully-coupled
AOGCM simulations), AMIP (atmospheric model
component only: driven by observed SSTs)
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Initial results: weighted means can show
significant differences from equal weight mean
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Y Observations (CERES)
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Observations (CERES)

Metrics perform similarly with 5 irwegnedme
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Future work:
Metrics will be tested on future trends
using a “perfect model” approach

In lieu of having future observations, one model
can be treated as the “perfect model” to create
weights

Approach will be repeated choosing different
models as the “perfect model” (way to test
sensitivity/robustness of metrics to choice of
observational data)
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Future work: project goals and
exploration questions

 Test avariety of weighting metrics for different quantities
and regions (Which process metrics are most important for

constraining different quantities? Are some metrics better
for certain regions?)

 Test scale- and state-dependency of weights (i.e. Do the
same models perform consistently better?)

 Apply weights to future projections to construct new
(“intelligent”) climate predictions



